

Friendship Among Triangle Centers

Floor van Lamoen

Abstract. If we erect on the sides of a scalene triangle three squares, then at the vertices of the triangle we find new triangles, the *flanks*. We study pairs of triangle centers X and Y such that the triangle of Xs in the three flanks is perspective with ABC at Y, and vice versa. These centers X and Y we call *friends*. Some examples of friendship among triangle centers are given.

1. Flanks

Given a triangle ABC with side lengths BC = a, CA = b, and AB = c. By erecting squares AC_aC_bB , BA_bA_cC , and CB_cB_aA externally on the sides, we form new triangles AB_aC_a , BC_bA_b , and CA_cB_c , which we call the *flanks* of ABC. See Figure 1.

If we rotate the A-flank (triangle AB_aC_a) by $\frac{\pi}{2}$ about A, then the image of C_a is B, and that of B_a is on the line CA. Triangle ABC and the image of the A-flank form a larger triangle in which BA is a median. From this, ABC and the A-flank have equal areas. It is also clear that ABC is the A-flank triangle of the A-flank triangle. These observations suggest that there are a close relationship between ABC and its flanks.

2. Circumcenters of flanks

If P is a triangle center of ABC, we denote by P_A , P_B , and P_C the *same* center of the A-, B-, and C- flanks respectively.

F. M. van Lamoen

Let O be the circumcenter of triangle ABC. Consider the triangle $O_AO_BO_C$ formed by the circumcenters of the flanks. By the fact that the circumcenter is the intersection of the perpendicular bisectors of the sides, we see that $O_AO_BO_C$ is homothetic (parallel) to ABC, and that it bisects the squares on the sides of ABC. The distances between the corresponding sides of ABC and $O_AO_BO_C$ are therefore $\frac{a}{2}$, $\frac{b}{2}$ and $\frac{c}{2}$.

3. Friendship of circumcenter and symmedian point

Now, homothetic triangles are perspective at their center of similitude. The distances from the center of similitude of ABC and $O_AO_BO_C$ to the sides of ABC are proportional to the distances between the corresponding sides of the two triangles, and therefore to the sides of ABC. This perspector must be the *symmedian point* K. ¹

Figure 2

The triangle $O_AO_BO_C$ of *circumcenters* of the flanks is perspective with ABC at the *symmedian point* K of ABC. In particular, the A-Cevian of K in ABC (the line AK) is the same line as the A-Cevian of O_A in the A-flank. Since ABC is the A-flank of triangle AB_aC_a , the A-Cevian of K_A in the K_A -flank is the same line as the K_A -Cevian of K_A in the K_A -flank is the same line as the K_A -Cevian of K_A in the K_A -flank is the same line as the K_A -Cevian of K_A in the K_A -flank is the same statement can be made for the K_A -cevian of K_A -flanks. The triangle K_A -flanks of the flanks is perspective with K_A -flanks at the *circumcenter* K_A -flanks is perspective with K_A -flanks.

For this relation we call the triangle centers O and K friends. See Figure 3. More generally, we say that P befriends Q if the triangle $P_AP_BP_C$ is perspective with ABC at Q. Such a friendship relation is always symmetric since, as we have remarked earlier, ABC is the A-, B-, C-flank respectively of its A-, B-, C-flanks.

¹This is X_6 in [2, 3].

Figure 3

4. Isogonal conjugacy

It is easy to see that the bisector of an angle of ABC also bisects the corresponding angle of its flank. The incenter of a triangle, therefore, *befriends* itself.

Consider two friends P and Q. By reflection in the bisector of angle A, the line PAQ_A is mapped to the line joining the isogonal conjugates of P and Q_A . We conclude:

Proposition. If two triangle centers are friends, then so are their isogonal conjugates.

Since the centroid G and the orthocenter H are respectively the isogonal conjugates of the symmedian point K and the circumcenter O, we conclude that G and H are friends.

5. The Vecten points

The centers of the three squares AC_aC_bB , BA_bA_cC and CB_cB_aA form a triangle perspective with ABC. The perspector is called the *Vecten point* of the triangle. ³ By the same token the centers of three squares constructed *inwardly* on the three sides also form a triangle perspective with ABC. The perspector is called the *second Vecten point*. ⁴ We show that each of the Vecten points befriends itself.

 $^{^2}$ For Q_A , this is the same line when isogonal conjugation is considered both in triangle ABC and in the A-flank.

³This is the point X_{485} of [3].

⁴This is the point X_{486} of [3], also called the *inner* Vecten point.

F. M. van Lamoen

6. The Second Vecten points

O. Bottema [1] has noted that the position of the midpoint M of segment B_cC_b depends only on B, C, but not on A. More specifically, M is the apex of the isosceles right triangle on BC pointed towards A.

To see this, let A', M', B'_c and C'_b be the orthogonal projections of A, M, B_c and C_b respectively on the line BC. See Figure 4. Triangles AA'C and CB'_cB_c are congruent by rotation through $\pm \frac{\pi}{2}$ about the center of the square CB_cB_aA . Triangles AA'B and BC'_bC_b are congruent in a similar way. So we have $AA' = CB'_c = BC'_b$. It follows that M' is also the midpoint of BC. And we see that $C'_bC_b + B'_c + B_c = BA' + A'C = a$ so $MM' = \frac{a}{2}$. And M is as desired.

By symmetry M is also the apex of the isosceles right triangle on B_aC_a pointed towards A.

We recall that the triangle of apexes of similar isosceles triangles on the sides of ABC is perspective with ABC. The triangle of apexes is called a *Kiepert triangle*, and the *Kiepert perspector* $K(\phi)$ depends on the base angle $\phi \pmod{\pi}$ of the isosceles triangle.

We conclude that AM is the A-Cevian of $K(-\frac{\pi}{4})$, also called the *second Vecten* point of both ABC and the A-flank. From similar observations on the B- and C-flanks, we conclude that the second Vecten point befriends itself.

7. Friendship of Kiepert perspectors

Given any real number t, Let X_t and Y_t be the points that divide CB_c and BC_b such that $CX_t: CB_c = BY_t: BC_b = t: 1$, and let M_t be their midpoint. Then BCM_t is an isosceles triangle, with base angle $\arctan t = \angle BAY_t$. See Figure 5.

Extend AX_t to X_t' on B_aB_c , and AY_t to Y_t' on C_aC_b and let M_t' be the midpoint of $X_t'Y_t'$. Then $B_aC_aM_t'$ is an isosceles triangle, with base angle $\arctan\frac{1}{t}= \angle Y_t'AC_a=\frac{\pi}{2}-\angle BAY_t$. Also, by the similarity of triangles AX_tY_t and $AX_t'Y_t'$

⁵Bottema introduced this result with the following story. Someone had found a treasure and hidden it in a complicated way to keep it secret. He found three marked trees, A, B and C, and thought of rotating BA through 90 degrees to BC_b , and CA through -90 degrees to CB_c . Then he chose the midpoint M of C_bB_c as the place to hide his treasure. But when he returned, he could not find tree A. He decided to guess its position and try. In a desperate mood he imagined numerous

Figure 5

we see that A, M_t and M'_t are collinear. This shows that the Kiepert perspectors $K(\phi)$ and $K(\frac{\pi}{2} - \phi)$ are friends.

Figure 6

In particular, the first Vecten point $K(\frac{\pi}{4})$ also befriends itself. See Figure 6. The Fermat points $K(\pm \frac{\pi}{3})^7$ are friends of the Napoleon points $K(\frac{\pi}{6})$. 8 Seen collectively, the *Kiepert hyperbola*, the locus of Kiepert perspectors, be-

friends itself; so does its isogonal transform, the Brocard axis OK.

diggings without result. But, much to his surprise, he was able to recover his treasure on the very first try!

⁶By convention, ϕ is positive or negative according as the isosceles triangles are pointing out-

⁷These are the points X_{13} and X_{14} in [2, 3], also called the isogenic centers.

 $^{^8}$ These points are labelled X_{17} and X_{18} in [2, 3]. It is well known that the Kiepert triangles are equilateral.

F. M. van Lamoen

References

[1] O. Bottema, Verscheidenheid XXXVIII, in *Verscheidenheden*, p.51, Nederlandse Vereniging van Wiskundeleraren / Wolters Noordhoff, Groningen (1978).

- [2] C. Kimberling, Triangle Centers and Central Triangles, Congressus Numerantium, 129 (1998) 1

 285.
- [3] C. Kimberling, *Encyclopedia of Triangle Centers*, 2000 http://cedar.evansville.edu/~ck6/encyclopedia/.

Floor van Lamoen: Statenhof 3, 4463 TV Goes, The Netherlands

E-mail address: f.v.lamoen@wxs.nl